

B Physics Results from DØ

Mike Hildreth

Université de Notre Dame du Lac

for the DØ Collaboration

Outline:

- Overview of DØ @ Run II
- Lifetimes
- Spectroscopy
- Prospects

CP&Mixing: See Paul Balm's

talk this afternoon

The RunII DØ Detector

Detector Performance

SMT: 91% operational

CFT: 99% operational

CAL: >99.9% operational

MUON: >99.5% operational

Data Taking $\varepsilon = 89\%$ (M,J)

$$\int \mathcal{L} dt = \sim 171 \text{ pb}^{-1} \text{ (LP: } 114 \text{ pb}^{-1}\text{)}$$

(April 2002 \to July 13, 2003)

B Physics Triggers:

- μ+jets, EM e[±] (CAL)
- muons:

$$|\eta| < 1: p_T > 3.5 \text{ GeV}$$
 di- μ 1< $|\eta| < 2: p_T > 2-2.5 \text{ GeV}$ single- μ

Track Calibration Samples:

coming soon...

- L1 track-muon match (p_T >1.5 GeV $|\eta|$ <1.7)
- L2 SMT Track trigger

*3

Tracker Performance

Impact Parameters:

Inclusive b Cross Section

 Begin with µ+jet sample, measure cross section for this process:

DØ Run 2 Preliminary

 Using muon p_T spectrum, fit for b and non-b content in bins of jet E_T

- Jet trigger eff. $\sim 100\%$ at $E_T = 20$ GeV
- Muon trigger efficiency ~55-70%
- Muon reco efficiency (43.7±0.8±2.2)%

 $p(\mu+jet)$

Inclusive b Cross Section

fraction of b-jets from fit:

b production cross section:

Dominant Errors:

- jet energy resolution
- energy scale uncertainty
- ⇒ Energy resolution function used to "unfold" cross section to true jet energy

- "Pythia" = Pythia+CTEQ4M, δ R<0.3
- Run I was compared to NLO(+MRSA') Nucl. Phys. **B483** 321 (1997)
- Different \sqrt{s} . Not directly comparable, but still **2-3x higher** than predictions

$J/y \rightarrow m^+m^-$ Sample

Our "in" to B Physics:

- ~1/6 from b-decay
- di-μ trigger running unprescaled since ~ Day 1
- access to many interesting/rare decays
- very clean signal
- (also helps in tracking commissioning)

Cuts:

- Tracks: p_T>1.5 GeV,
 >3 SMT hits, >4 CFT hits
- $p_T(J/\psi) > 3 \text{ GeV}$
- (Yield very cut-dependent)

Comments:

- J/ ψ mass about 1/3 σ low; calibration not finalized yet (material, magnetic field)
- mass resolution close to MC expectation

* ******

Inclusive B lifetime

- Use $B \rightarrow J/yX$ decays
- Decay length L_{xy} given by the primary vertex and the J/y vertex:

$$c\tau_{J/\psi} = L_{xy} \frac{M_{J/\psi}}{p_T^{J/\psi}}$$

But, p_T of B unknown: Infer ct_B from
 ct_{J/v} by using MC correction:

$$c\tau_{B} = \frac{\lambda_{J/\psi}}{\left\langle F(p_{T}^{J/\psi}) \right\rangle}; \quad \left\langle F(p_{T}^{J/\psi}) \right\rangle = \frac{M_{J/\psi}}{M_{B}} \frac{p_{T}^{B}}{p_{T}^{J/\psi}}$$

 Correction varies from 0.8-0.9 over visible momentum range

(Pythia+QQ, Run I tune)

Inclusive B Lifetime

Proper B decay length:

$$t_{\rm B} = 1.561 \pm 0.024 \pm 0.074 \text{ ps}$$

PDG: $t_{\rm R} = 1.564 \pm 0.014 \, \rm ps$

Prompt components:

- J/ψ : pp \rightarrow ccX
- combinatorics
- modelled as 2 Gaussians
- Exponential components:
 - B signal: $b \rightarrow cX$
 - semileptonic b, c decays
- Gaussian params, background normalization from J/ψ sidebands
- Fit for:
 - B fraction
 - decay length

B fraction: 14.6%

Prompt J/ψ : 64.6%

Background: 21.3%

χ_c Reconstruction

Photon conversions:

- can't yet separate χ_{c1} , χ_{c2}
 - fit with fixed $\Delta M_{1,2} = 46 \text{ MeV}_{10}$
- PDG M(J/ $\psi\gamma$)-M(J/ ψ) = 414 MeV
- more data, improvements coming %

- Looking for $b \rightarrow \chi_c + X$ (Br ~ 1-2%)
- Find χ_c in $\chi_c \rightarrow J/\psi \gamma$, $\gamma \rightarrow e^+e^-$
- ε_{γ} ~ 0.4%, but 27% of J/ ψ come from χ_{c} ! (CDF Run I, PRL **79**, 578 (1997)

DØ Run II Preliminary

Exclusive B[±] decays

 J/ψ (p_T>4 GeV) associated with K track from same jet

- $p_T(K) > 0.5 \text{ GeV}, b(K)/\sigma_b > 3^{-3}$
- $L(B^+)/\sigma_L > 3$
- $cos(\theta(L,p_B)) > 0.9$
- $b(B^+)/\sigma_b < 4$
- no particle ID (K/π)

- Fully-reconstructed decays:
 - lifetime measurements
 - mixing (proper time resolution), flavor tagging studies

Exclusive B_d decays

Combine J/y with pp or Kp:

(same cuts as B⁺ analysis)

•
$$p_T(K_s) > 0.5 \text{ GeV}$$

Exclusive B_s decays

Combine J/y with KK:

$$B_s \rightarrow J/\psi \phi$$

• one of the useful modes for CP violation in the B_s sector:

$$Im(\lambda_{J/\psi\phi}) = (1-f_{odd}) \sin 2\beta_s$$

- Measurement of asymmetry requires analysis of final state angular momentum
- could be diluted by cancellation of CP-odd and CP-even contributions
- large asymmetry would be unambiguous sign of new physics!
- B_s Lifetime $\rightarrow \Delta \Gamma_s$

Stay tuned!

Exclusive Λ_b Decays

Combine J/y with a L:

$$\Lambda_{\rm b} o {\rm J/\psi} \Lambda$$

- now updated with full RunII statistics
- Being used for Λ_b lifetime measurement
- look for result at Lepton-Photon

Charged B Lifetime

Proper B decay length:

Using $B^{\pm} \rightarrow J/\psi K^{\pm}$ mode

- full reconstruction
 - no hadronization uncertainties
 - excellent proper time resolution

Details:

- B⁺ event selection without decay length cut
- R. Sideband used for background
- Non-(B $^{\pm} \rightarrow J/\psi K^{\pm}$) contribution (12%) from other B decays taken from MC

$$t_{\rm B^+} = 1.76 \pm 0.24 \text{ (stat) ps}$$

PDG: $t_{B^+} = 1.674 \pm 0.018 \, \text{ps}$

Inclusive Semi-leptonic B Decays

- High Yield!
- excellent source of B hadrons for tagging, trigger, physics studies

- Single muon triggers!
 - $|\eta| < 2, p_T(\mu) > 2-3.5 \text{ GeV}$
- simple cuts:
 - $p_T(\mu) > 2 \text{ GeV}, p_T(\pi, K) > 1 \text{ GeV}$
 - $(b(\pi,K)/\sigma_b)^2 > 6$, $L(D)/\sigma_L > 4$
 - $-\cos(\theta(\overline{\mathbf{L}},\overline{\mathbf{p}}_{D}))>0.95$
 - $-\chi^{2}_{vtx}(\mu D) < 4$
 - $2.3 \text{ GeV} < M(\mu D) < 5.5 \text{ GeV}$
- Here, only D⁰ → Kp mode used
 - Obviously, can also use
 - $B \rightarrow m^{\pm}D^*X$
 - $B \rightarrow m^{\pm}D^{\pm}X$
 - B $\rightarrow m^{\pm}D_sX$

Conclusions/Prospects

- DØ is well-positioned to contribute substantially to our B-physics knowledge in RunII
 - excellent tracking, muon coverage
 - high-efficiency running
 - high yields in many useful final states
 - flavor tags look promising (See Paul Balm's talk)
- Many new results coming for Lepton-Photon
 - updates on lifetimes ($B^+, \Lambda_b, B_s, ...$)
 - first look at B_d/B_s semi-leptonic decays
 - rare decays
- Expect DØ to be competitive!

